Patents

  1. Cleland, T. A., Imam, N., & Borthakur, A. (2022). Neuromorphic algorithm for rapid online learning and signal restoration. Cornell University; US Patent App. 17/603,171.
  2. Paul, S., & Borthakur, A. (2022). Sequential Neural Machine: a memory optimal solution for ultra low power and high speed inference.
  3. Kozdon, K., Maksimiuk, D., Borthakur, A., & Bogdan, P. A. (2022). Method for efficient Radar pre-processing.

Publications

  1. Borthakur, A. (2022). Sapinet: A sparse event-based spatiotemporal oscillator for learning in the wild. ArXiv.
  2. Cleland, T. A., & Borthakur, A. (2020). A Systematic Framework for Olfactory Bulb Signal Transformations. Frontiers in Computational Neuroscience, 14:579143.
  3. A.Borthakur, & Cleland, T. A. (2019). A Spike Time-Dependent Online Learning Algorithm Derived From Biological Olfaction. Frontiers in Neuromorphic Engineering, 13:656.
  4. Shirhatti, V., Borthakur, A., & Ray, S. (2016). Effect of Reference Scheme on Power and Phase of the Local Field Potential. Neural Computation, 28.
  1. Ambati, R., & A.Borthakur. (2023). A Study on Tiny YOLO for Resource Constrained Xray Threat Detection. ACM, AIMLSys 2023.
  2. A.Borthakur, & Cleland, T. A. (2019). Signal Conditioning for Learning in the Wild. NICE ’19: Proceedings of the 7th Annual Neuro-Inspired Computational Elements Workshop.
  3. A.Borthakur, & Cleland, T. A. (2017). A Neuromorphic Transfer Learning Algorithm for Orthogonalizing Highly Overlapping Sensor Array Responses. IEEE: International Symposium on Olfaction and Electronic Nose (ISOEN).

Other publications

  1. Borthakur, A. (2021). Mechanisms and architectural priors for learning in the wild. Cornell University; Ph.D. Thesis.